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Abstract

Non-rigid surface registration consists in estimating the deformation of a known flat
surface, usually by fitting a warp such as a Thin-Plate Spline or a Free-Form Deformation.
Common techniques are split in two categories: (1) pixel-based surface tracking where
important deformations can be estimated over a video sequence as long as the frame to
frame steps are small and (2) wide-baseline feature-based registration, able to directly
handle large deformations at the cost of reduced accuracy. We introduce a new direct data
term robustly merging feature and pixel-based costs in a pyramidal variational approach.
By using a robust estimator we achieve an implicit optimal filtering of features and
automatic balancing between the two terms.

Figure 1: Example of surface registration with our method

1 Introduction
Non-rigid surface registration consists in estimating the deformation between two images
of a known surface, usually by fitting a warp such as a Thin-Plate Spline or a Free-Form
Deformation. It is a fundamental Computer Vision tool with applications such as augmented
reality, non-rigid 3D reconstruction, or deformation analysis. Common techniques are split in
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two categories: detection and tracking. Pixel-based tracking [5, 6] tracks deformations over a
video sequence through variational optimization and can handle large deformations as long
as the frame to frame steps are small. Feature-based surface detection [9, 10, 16] directly
estimates a potentially important deformation from an image and a source template using
feature matches [2, 8]. Feature-based techniques tend to be more robust but less accurate
than pixel-based ones since they discard much of the available information. Moreover, the
warp fitting process needs an outlier filtering step using a robust estimator [9, 16] or a local
smoothness prior [10] which is tricky to tune right in order to remove all outliers while
keeping all good matches. There has been surprisingly few attemps to combine the strengths
of the two approaches. Pizarro et al. [10] propose to initialize the pixel-based algorithm [6]
with a feature-based warp but they still depend much on the quality of the former. In the more
general field of optical flow estimation the integration of features into a variational estimation
has been proven successful by Brox et al. [3]. However they rely on custom descriptors
only suited for small-baseline displacements. We propose here an extension of this approach
dedicated to non-rigid surface registration presented from the features filtering point of view.
We propose to upgrade the pixel-based method [6] — already quite robust thanks to the
handling of occlusions and the use of a coarse-to-fine optimization — with the introduction
of a new feature-based term in the cost function. Thus we make this method viable for
wide-baseline registration. Our framework is given in Section 2, starting from the models
used (2.1), then the introduction of our feature-based cost (2.2) and at last the bending-energy
and pixel-based priors we consider for match filtering (2.3). Section 3 includes qualitative
and quantitative results with comparisons to state of the art feature-based techniques.

2 Proposed Framework

2.1 Models
Inputs. Our goal is to estimate the deformation between a flat template I0 and an image
I of the deformed surface. Ω denotes the set of pixels of I0 and can be seen as continuous
using for instance linear interpolation of the pixel values. Accompanying the image pair, a
set F of point feature matches (which may contain erroneous matches) has been computed
beforehand.

Deformation model. We use a two-dimensional Free-Form Deformation model based on
cubic B-splines to parametrize the deformation. We use the formulation from [7] that we
briefly recall here. We define a nx×ny regular grid of control points si, j with a step δ , and the
displacements ui, j associated to control points. The warp is defined as a linear combination
of the 16 neighboring control points:

W(q;u) =
3

∑
k=0

3

∑
l=0
Bk(v)Bl(w)(si+k, j+l +ui+k, j+l) (1)

where q = (qx,qy)
T , i = floor(qx/nx)− 1, j = floor(qy/ny)− 1, v = qx/nx− floor(qx/nx),

w = qy/ny−floor(qy/ny) and the Bk are the basis functions of the B-spline:

B0(v) = (1− v)3/6 B1(v) = (3v3−6v2 +4)/6

B2(v) = (−3v3 +3v2 +3v+1)/6 B3(v) = u3/6
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This model has the desirable property of producing a twice continuously differentiable warp.
Moreover, the control points only have a local influence which makes the warp estimation
computationally cheap in many cases.

We define the discrete finite difference partial derivatives in a direction d:

Dd(q,u) = W(q+δd,u)−W(q−δd,u)
2δ

D(l)
d (q,u) = W(q,u)−W(q−δd,u)

δ
D(r)

d (q,u) = W(q+δd,u)−W(q,u)
δ

(2)

Cost model. We adopt the following model for the cost function of non-rigid registration:

ε(u,F ,I,I0) = ε f (u,F)+ εprior(u,I,I0) (3)

where ε f is our feature-based cost function given in Section 2.2 and εprior is an energy
encoding other constraints (smoothness of the warp, self-occlusion handler and pixel-wise
brightness constancy) to filter out false matches and regularize the output.

2.2 Feature-Based Cost
We call F the set of matches composed of two point features f0 ∈ I0 and f ∈ I. As in [3], the
feature-based cost is naturally a function of the distance between the warp displacement u
and the displacement f− f0 induced by the matches. We have

ε f (u,F) = λ f ∑
(f0,f)∈F

∫∫
Ω

ω(q, f0)Ψσ (‖u− (f− f0)‖2)dq (4)

The bilinear influence fonction ω has a radius of one pixel and is normalized to make the
overall influence of features independent from their density. If (dx,dy)

ᵀ = abs(q− f0), it is
defined as:

ω̂(q, f0) = (1−dx)(1−dy) if dx < 1 and dy < 1, 0 otherwise (5)

ω(q, f0) =
ω̂(q, f0)

∑(g0,g)∈F ω̂(q,g0)
(6)

When several features are associated to the same control points, the contribution of the
feature-based cost can be seen as a weighted vote of each feature.

M-estimator for implicit outliers filtering. When dealing with unfiltered features includ-
ing erroneous matches, a robust estimator is needed to deal with outliers. Brox et al. [3] use
the Huber approximation of the L1 norm, while Pilet et al. use a non convex estimator which
was shown to be efficient at filtering the matches when reducing its radius at each iteration in
an annealing manner. We use the classical Geman McClure estimator

Ψσ (x) =
x2

σ + x2 (7)

which has a strong filtering power without any explicit thresholding (see Figure 2). The
integration into the optimization is straightforward using iteratively reweighted least squares
with weights: w(x) = 1

x
dΨ(x)

dx = 2σ

(σ+x2)
2 .
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Figure 2: Geman McClure M-estimator with σ = 0.2

Pyramidal scheme for automatic balancing. The use of coarse-to-fine optimization ex-
hibits automatic balancing of the feature-based cost. Indeed, as shown in [3], the features
are quasi-dense at low resolution, constraining strongly the updates of the warp, while at
high resolution, only a few control points are affected and the regularization limits their
influence. Moreover, the pyramidal approach allows one to use a constant radius for our
robust M-estimator during the whole process with each upsampling step naturally increasing
its selectivity.

Discussion. The cost function (4) looks similar to the ones proposed in [9] and [3] but there
are some key differences that explain our better results (see Section 3). Contrary to them we do
not rely on any confidence measure of the matches, often unreliable and much less important
than the spatial coherency implied by the robust estimator as shown in [9]. This allows us
to use any current and future feature matcher without changes in our algorithm. Moreover
by using all the available information — features, intensity, suitable deformation model and
self-occlusions handling — we have the unique combination of a robust non-convex estimator
with a rich prior dedicated to non-rigid deformations.

2.3 Priors

We propose a combination of three complementary energies as the prior cost introduced in (3):
a global regularizer, a term handling self-occlusions and a pixel-based cost that we explain in
the following paragraphs:

εprior(u,I,I0) = εb(u)+ εs(u)+ εd(u,I,I0) (8)

Bending energy. For smooth deformations of deformable surfaces without crumpling, the
bending energy is a well suited constraint [1]. It penalizes the variations of the second order
derivatives and is defined as:

εb(u) = λb

∫∫
Ω

(
∂W(q;u)2

∂ 2qx

)
+

(
∂W(q;u)2

∂qx∂qy

)
+

(
∂W(q;u)2

∂ 2qy

)
dq (9)

Self-occlusion handling. Self-occlusions appear when a deformable surface folds such as
part of it is hidden by another of its parts. They can be handled gracefully by noting that the
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derivative of the warp vanishes in one direction [6]. Using the finite difference approximation
(2) this translates to:

q self-occluded ⇔ ∃d | Dd(q;u) = 0 (10)

It has been shown [6] that the smallest partial derivative σ0 is linked to the Jacobian J by
σ0 = min‖d‖=1 dᵀJᵀJd and after spectral decomposition of O = JᵀJ:

σ0 =
1
2

(
O11 +O12−

√
(O11−O22)

2 +4O2
12

)
(11)

A smooth step function S(x,k,r) = 1
1+exp(−k(x−r)) translates σ0 to a self-occlusion probability:

PSO = 1−S(σ0,40,0.1) (12)

In order for the criterion (10) to hold, the warp must be prevented from folding in self-
occluded areas, which is achieved through the addition of a dedicated shrinker term:

εs(u) = λs ∑
q∈Ω

∑
d∈D

∑
c∈{x,y}

γ

{(
D(l)

d (q;u)
)

c

(
D(r)

d (q;u)
)

c

}
γ(x) = 0 if x≥ 0 and x2 otherwise

(13)

where D is a discretized set of directions and the function γ penalizes points where the right
and left derivatives have opposite signs (see [6] for details).

Pixel-based data term. The data term used is based on the brightness constancy assumption:
corresponding pixels in the two images are assumed to have similar intensities. The resulting
data cost is the sum of the squared differences:

εd(u,I,I0) = λd ∑
q∈Ω

(1−PSO)(I0(q)−I(W(q;u)))2
(14)

The direct data term is not to be trusted in self-occluded areas, so we multiply it by 1−PSO.
This model fails in the presence of illumination changes and several solutions have

been proposed to address this issue such as structure-texture decomposition [17], Light-
Invariant [11] or CENSUS [12, 18] transforms. Our feature-based data term is independent of
the direct term used so we restrict ourselves to the simple model (14) for clarity.

Discussion. It is unusual to consider a pixel-wise error as a prior but we made this
conceptual choice to fit our approach into the model (3) and allow an easier comparison with
methods based on feature filtering. Moreover, in the wide-baseline setting the feature-based
data term can usually converge without the pixel-wise prior but the inverse is not true, which
proves that the latter is weaker.

3 Experimental Results
In this section, we demonstrate the validity of the joint optimization of the feature-based
and direct data terms. We use the same parameters for all the experiments: 6 pyramid
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levels, a grid step δ = 5px, λd = 1, λ f = 800, λb = 5000, λs = 100000, σ = 0.2. Our
Matlab implementation is based on the publicly available code of [6] for the Gauss-Newton
optimization of a direct data term. We compare our method with the public implementations
of state of the art feature filtering methods FBDSD [10] based on local smoothness assumption
and RANSAC [16] based on plane fitting with a robust estimator. The general optical flow
methods such as LDOF [3] are not designed for strong deformations and do not produce
results worth mentioning on the following experiments. The feature matches are obtained
with the OpenCV implementations of the FAST [13] and SIFT [8] detectors, and the SIFT
descriptors, with default parameters. A cross-check filtering step eliminates ambiguous
matches. Qualitative results Figures 3 and 4 show the accuracy and robustness of our method
demonstrated in the next sections through in-depth quantitative evaluations.

Figure 3: Qualitative results on the EPFL dataset [14, 15]. First row: templates, second row:
deformed surface with estimated deformation.

Figure 4: Result on a challenging case from the ETHZ toys dataset [4]. From left to right:
template, estimated deformation with FBDSD [10], estimated deformation and estimated
self-occlusions (in white) with our method.

3.1 A Case Against Feature-Only Filtering
In this first experiment, we use a synthetic deformation showed in Figure 1 which provides
ground truth. We generate 331 feature matches. We run the two filtering approaches on
those matches, and refine the output with a pass of the pixel-based method [6]. The average
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warp errors are listed in Table 1. To explain the results, we separate the matches into 111
inliers within a 2 pixels of the ground-truth warp, and 220 outliers and compare them with
the filtered features. Figure 5 shows the output of the feature filtering approaches. For the
warp fitting process, it is crucial that the features are as uniformly distributed on the template
as possible. FBDSD seems to be overly selective with all the remaining features concentrated
in the middle of the template. RANSAC is on the contrary too permissive.

We believe this experiment demonstrates that separating the feature filtering and warp
fitting steps is misguided because each optimization is based on incomplete knowledge and
cannot compensate the weaknesses of the other. On the other hand, our joint optimization
produces near-optimal results from the same data.

With this 320×400 template, the processing time of the unoptimized Matlab implementa-
tion is approximately 20 seconds. This is longer than the feature-based techniques but almost
the same as the method [6] since our feature-based term adds only little overhead.

(a) 111 inliers (< 2px) (b) FBDSD [10] filtering (c) RANSAC [16] filtering

43 false positives 143 false positives
86 false negatives 2 false negatives

Figure 5: The feature-only filtering strategies either miss some true matches or leave false
matches. See text Section 3.1.

Method FBDSD FBSD+P RANSAC RANSAC+P Inliers Inliers+P Ours

Average error (px) 12.234 6.37 7.91 5.07 6.92 4.73 1.35

Table 1: Comparison of feature-based approaches on the image pair Figure 1. The “+P”
variants are refined warps with pixelic information using [6]. “Inliers” designates the warp
fitted to the 2px inliers (see text).

3.2 Quantitative Evaluation on a Real Sequence
After this synthetic experiment, we observe the behaviors of the considered algorithms on a
real sequence. We use the sequence accompanying the implementation of [6]. The tracking-
based results [6] are accurate enough compared to feature-based methods to serve as a ground
truth. Over the 100 first frames of the sequence we compare the feature-based approaches
using only the template, the current frame and SIFT matches. We also use this sequence
to evaluate the different priors presented Section 2.3 and run our method with only the
bending energy regularization (9) which is almost equivalent to [9], then adding the shrinker
term (13) for better behavior in the presence of self-occlusions, and at last adding the direct
data term (14) to exploit all the available information.
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Method average error w/o SO with SO

RANSAC [16] 1.07 6.22
FBDSD [10] 1.59 14.06
FBDSD+P [10] 0.29 12.74
Bending energy regularization (9) 2.02 9.14
. . . and shrinker term (13) 2.02 7.74
. . . and pixel-based data term (14) 0.10 1.60

Figure 6: Evolution of the Free-Form Deformation control points average error relative to
the tracking based method [6]. Our method is evaluated with the bending energy prior ,
adding the shrinker term for better robustness to self-occlusions, and the pixel-based
data term for better accuracy . For reference we include the results of the methods [16]
(RANSAC) and [10] (FBDSD) feature-based warps and refined with pixellic data
term (FBDSD+P) . Best viewed in color.
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(a) Bending energy (60%) (b) Bending energy (26%)

(c) . . . and Shrinker (60%) (d) . . . and Shrinker (42%)

(e) . . . and Pixel-Based (100%) (f) . . . and Pixel-Based (86%)

(g) Tracking-based [6] (h) Tracking-based [6]

Figure 7: Comparison of our results using SIFT matches (198 matches on the left, 155
matches on the right) with the tracking based method [6]. The percentage is the amount of
control points within a 2 pixels radius of the tracking-based results.
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Quantitative results are plotted Figure 6 and show that our approach is clearly superior
except for very small deformations where it is on par with current state of the art. Sample
output on two frames displayed Figure 7 stresses the importance of the priors. The shrinker
has no effect in the absence of self-occlusions but can bring a great improvement otherwise.
The pixel-based data term is essential for correct fitting on the warp near the boundaries of
the surface, where feature density is usually low.

Conclusion
We introduced a new model of non-rigid surface registration to jointly optimize feature and
pixel-based costs through a pyramidal variational scheme. We demonstrated the viability
of the approach and showed results where we clearly outperformed other state of the art
methods, quantitatively and qualitatively on synthetic and real data. All results were obtained
with the same parameter set which proves that our contribution is robust. Future works
involve incorporating better features and more robust pixel-based data terms. A real-time
implementation on a compiled language is also envisioned for augmented-reality applications.
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