Combining Features and Intensity for Wide-Baseline Non-Rigid Surface Registration

Closest work [3]

1. Match filtering

2. Warp fitting

3. Optional intensity-based refinement

Ours: joint optimization and filtering using putative matches and intensity

Deformation Model

Free-Form Deformation (FFD) Displacement of control points: **u**

Optimization scheme [2]

Gauss-Newton optimization

• Sparse Jacobian

• Coarse-to-fine warping

$ \text{Minimize } \epsilon(\mathbf{u}, \mathcal{F}, \mathcal{I}, \mathcal{I}_0) = \epsilon_{\text{features}}(\mathbf{u}, \mathcal{F}) + \epsilon_{\text{regularization}}(\mathbf{u}) + \epsilon_{\text{shrinker}}(\mathbf{u}) + \epsilon_{\text{brightness}}(\mathbf{u}, \mathcal{I}, \mathcal{I}_0) $			
Feature-Based Cost	Bending Energy	Shrinker	Brightness Constancy
$= \lambda_{f} \sum_{(\mathbf{f}_{0}, \mathbf{f}) \in \mathcal{F}} \int_{\Omega} \omega(\mathbf{q}, \mathbf{f}_{0}) \Psi_{\sigma} (\ \mathbf{u} - (\mathbf{f} - \mathbf{f}_{0})\ _{2}) d\mathbf{q}$ ω : bilinear weight function, 2 × 2 px support influence decreases with resolution $\int_{0, 5} 0 \int_{0, 5} 0 \int_{0,$	$= \lambda_b \int_{\Omega} \left\ \frac{\partial \mathcal{W}^2}{\partial^2 \mathbf{q}} (\mathbf{q}, \mathbf{u}) \right\ d\mathbf{q}$ enforces smooth deformations	$= \lambda_s \sum_{\mathbf{q} \in \Omega} \sum_{\mathbf{d} \in \mathcal{D}} \sum_{c \in \{x, y\}} \gamma \left\{ \left(D_{\mathbf{d}}^{(l)}(\mathbf{q}; \mathbf{u}) \right)_c \left(D_{\mathbf{d}}^{(r)}(\mathbf{q}; \mathbf{u}) \right)_c \right\}$ where $\gamma(x) = 0$ if $x \ge 0$ and x^2 otherwise $\underset{\mathbf{q} \ge 0}{\overset{20}{\underset{10}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	 = λ_d ∑_{q∈Ω} (1 - P_{occ})(I₀(q) - I(W(q; u)))² Not enough for wide-baseline convergence Useful for fine estimation Greatly improves accuracy, especially in low texture areas and near boundaries

Conclusion and Future Work

- \rightarrow We showed that our method is able to estimate **large deformations** even from **low-quality matches with outliers**.
- → The qualitative and quantitative evaluations showed an **increase in accuracy** compared to state of the art, especially in challenging cases where our method presents a **vastly increased convergence basin**.
- \rightarrow The processing time (\approx 30s in Matlab) is on par with pixel-based methods since **the overhead of our feature term is insignificant**.
- → Future work involves developping a real-time implementation, incorporating new features (lines, curves, regions. . .), robustifying the pixel-based term to
 illumination changes and generalizing the approach to other problems such as optical flow.

[1] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI, 2011.

- [2] V. Gay-Bellile, A. Bartoli, and P. Sayd. Direct estimation of nonrigid registrations with image-based self-occlusion reasoning. PAMI, 2010.
- [3] D. Pizarro and A. Bartoli. Feature-based deformable surface detection with self-occlusion reasoning. *IJCV*, 2012.
- [4] Q. Tran, T. Chin, G. Carneiro, M. Brown, and D. Suter. In defence of RANSAC for outlier rejection in deformable registration. In ECCV, 2012.

