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Abstract

Dense motion field estimation (typically optical flow,
stereo disparity and surface registration) is a key computer
vision problem. Many solutions have been proposed to com-
pute small or large displacements, narrow or wide baseline
stereo disparity, but a unified methodology is still lacking.
We here introduce a general framework that robustly com-
bines direct and feature-based matching. The feature-based
cost is built around a novel robust distance function that
handles keypoints and “weak” features such as segments. It
allows us to use putative feature matches which may con-
tain mismatches to guide dense motion estimation out of
local minima. Our framework uses a robust direct data term
(AD-Census). It is implemented with a powerful second or-
der Total Generalized Variation regularization with external
and self-occlusion reasoning. Our framework achieves state
of the art performance in several cases (standard optical
flow benchmarks, wide-baseline stereo and non-rigid sur-
face registration). Our framework has a modular design that
customizes to specific application needs.

Introduction
A dense motion field, also called optical flow, is a very

useful cue for problems such as tracking, segmentation, local-
ization and reconstruction, or non-rigid surfaces registration.
Optical flow estimation is an old computer vision problem.
While early techniques were patch-based [19], current ones
estimate dense flow fields with variational methods built
upon the work by Horn and Schunk [16] by coupled min-
imization of a data term – often based on the brightness
constancy assumption – and regularization. The use of non-
quadratic norms such as L1 or Huber [30] and illumination-
invariant data terms [35, 20, 25] has led to increasingly ac-
curate and robust algorithms. Occlusions can be somehow
handled with anisotropic regularizers [30, 36] but those are
very application-dependent and degrade the output if not
well tuned. Current best results are achieved when occlu-

sions are explicitly modeled [32, 13]. Coarse-to-fine warping
improves global convergence by making the assumption that
the motion of smaller structures is similar to the motion of
larger structures. These techniques may fail in the following
two cases. First in the presence of image structures whose
size is smaller than their relative displacement magnitude ;
second, in the wide-baseline or non-rigid settings where the
images can be too different at coarser resolutions to facilitate
an accurate initialization.

Contrary to those methods, feature detection and descrip-
tion aims at obtaining sparse global matches. Most point
descriptors such as SIFT [18] and SURF [3] use the concept
of histograms of gradient. Another kind of common features
is segments [28, 29]. Wang et al. proposed a technique [28]
for wide-baseline segment matching which encodes semi-
local geometric information about the scene and is thus a
good fit for low-texture or high perspective distortion image
pairs. The amount of outliers depends on the quality of the
feature, detector and descriptor used but there is no way to
suppress them without strong assumptions on the scene.

The research on non-rigid surface registration offers a
good example of the duality of features and whole image
information. Surface tracking – frame to frame estimation
of a deformation – offers the best accuracy when using a di-
rect pixel-wise cost [13, 12] but those methods, similarly to
standard optical flow techniques are limited to small updates
at each frame. On the other hand there is the problem of sur-
face detection: estimation of the deformation from only one
frame and the flat template image. This is usually done from
feature matches which are first filtered to remove outliers
and then fitted by a warp such as a Thin-Plate Spline [23].
Recent works [24] aim at initializing an image-based method
from a feature-based warp but the two steps are still inde-
pendent and if the warp is too inaccurate in some areas, the
final step is unlikely to recover the true deformation. This
duality is also present in 3D reconstruction where narrow-
baseline stereo is solved with dense variational methods [25]
but wide-baseline reconstruction is usually based on fea-
tures such as in keyframe-based Simultaneous Localization



And Mapping [21] (we do not consider the multi-view case,
which can be seen as several narrow-baseline problems).
Dense descriptors [27, 17] tend to blur the line between im-
age and feature-based costs but are still sparsely used and
need to be embedded in a costly discrete global optimization.

Surprisingly few attempts have been made to use image
and feature informations at the same time. Wills et al. [31]
propose a RANSAC approach to dense motion segmentation
and estimation from feature matches. The layered approach
yields an easy understanding of the scene motions but is
restricted in accuracy by the deformation model (planar and
non-rigid models were proposed). Xu et al. [32] feed a
discrete optimization step with candidate displacement vec-
tors from, among other, SIFT features and patch matches.
The output is then refined with a variational regularization.
This gives very accurate results for small or large displace-
ments but the process is computationally expensive. Brox et
al. [9] inspired our work with a successful approach cou-
pling descriptor matching with variational optimization in
the same process. Their method remains a reference in opti-
cal flow estimation for its robustness and accuracy, but we
identified several limitations. It only uses custom descriptors
computed densely or on a fixed spatial grid and the tight
coupling between the feature matching and the cost function
(see Section 1) prevents from using state of the art features.
As we will see, this puts unnecessary restrictions on the
scope of the method. Moreover, the resolution process is
also specific to the method and does not use current faster
primal-dual based algorithms.

We propose a novel approach to widen the range of ap-
plicability of dense variational methods. This is achieved
by combining direct and feature-based costs in one process
with a focus on flexibility and robustness to easily exploit
any descriptor and detector. Feature detection and matching
is done only once on the full-resolution image pair but the
feature matches guide the optical flow out of local minima
during the whole optimization. After a brief introduction
to the LDOF [9] method in Section 1, we introduce our
framework built around the second-order Total Generalized
Variation [8] for regularization in Section 2.1, a robust direct
cost with occlusions handling in Section 2.2, and a novel
feature-based cost able to handle unfiltered matches of point
features or weakly localized segments in Section 2.3. Each
of these building blocks can easily be upgraded to take ad-
vantage of future work on regularization, image-based cost
or feature matching.

Notation. We consider a pair of images I0 and I1. The
motion field is estimated over the image domain Ω of I0. The
images are modeled as continuous real-valued functions by
interpolating the pixel intensities. The L2 Euclidean norm is
noted ‖.‖ and the L1 norm is noted |.|. Vectors and vector-
valued functions are noted in bold lowercase (x) and matrices

in bold uppercase (J). The estimated motion field is called
u : Ω→ R2 such as for all x ∈ Ω, I0(x) ≈ I1(x + u(x)).

1. Large Displacement Optical Flow
In this section we summarize the work of Brox et al. [9]

who proposed the first introduction of rich descriptors in
variational optical flow computation through the addition of
a new term in the cost function:

CLDOF(u) = Ccolor(u) + γ Cgradient(u) (1)
+ αCsmooth(u) (2)

+ β

N∑
i=1

Cmatch(u,u
(i)
match) + Cdesc(u

(i)
match)︸ ︷︷ ︸

nearest neighbors

(3)

with (1) the direct data term, (2) the regularizer and (3) the
feature integration cost. Cmatch(u,u

(i)
match) is defined as∫

Ω

δi(x)ρi(u
(i)
match)Ψ(‖u(x)− u

(i)
match‖) dx (4)

where for each feature match i ∈ 1 . . . N , u(i)
match is the dis-

placement induced by the match, δi is an indicator function
for the affected pixels and ρi(u

(i)
match) the quality of the match.

Ψ : x2 →
√
x2 + ε is a robust cost function approximating

the L1 norm. Brox et al. proposed two types of features to
associate a priori displacements to affected pixels: regions
using SIFT [18] and color based descriptors, and points using
Histogram of Oriented Gradients [11] or Geometric Blur [4]
over a fine regular grid. Nearest neighbors in feature space
are selected as potential matches ; this processus is repre-
sented by the term Cdesc(umatch) which does not intervene in
the variational optimization. The direct cost term (1) consists
in the combination of brightness and gradient differences
while the regularization cost (2) is an approximation of the
Total Variation, both with the same robust norm Ψ. The
resolution uses variable decoupling and alternated standard
primal minimization with linearized Lagrange equations in
a coarse-to-fine warping scheme.

Our framework does not share many implementation de-
tails but was inspired by two main findings. First, Brox et
al. showed that while not increasing the best case accuracy,
feature matches help drive optical flow estimation out of
local minima when the common assumptions of coarse-to-
fine warping are violated. Second, they highlighted the nice
behavior of coarse-to-fine warping naturally giving a de-
creasing weight to features as they go from quasi-dense at
coarse levels to sparser at fine levels.

While it leads to impressive results, we find this model to
be overly restrictive. Equation (4) needs the features to be
well localized (to translate matches to displacements) and
to provide a match quality score to minimize the impact
of outliers. This limits the scope of suitable features and



introduces a tight coupling between the feature matcher and
the variational solver. The logic behind this choice was to let
the variational solver “do the matching” by selecting the best
feature amongst the neighbors in feature space. However the
conclusion in [9] is that incorporating only the best neighbor
gives better results by getting rid of conflicting costs. We
propose a generalized approach that relaxes those constraints
for an easy plugging in of current and future feature matchers,
see Section 2.3.

2. Proposed Framework

Our cost function has the following form:

Cours(u) =λCdirect(u) + TGV2(u, α0, α1) (5)

+β

N∑
i=1

Cmatch(u,Fi).

We use a variational model built around the recently intro-
duced second order Total Generalized Variation [8] (TGV2)
regularization which favors piecewise-affine displacement
fields as detailed in Section 2.1. Several direct data terms
Cdirect can be used, we list three in Section 2.2. Contrary
to LDOF in (4), Cmatch is here a function of the distance
of x + u(x) to the target feature and not the difference be-
tween u(x) and an a priori displacement. This distinction
allows us to incorporate features which are not “fully local-
ized” such as segments. The feature-based cost function is
explained Section 2.3.

2.1. Second Order Total Generalized Variation

Definition. The two components ux and uy of the optical
flow are independently regularized. In this section we use
the notation u to design any of those two scalar fields. The
Total Variation TV(u) =

∫
Ω
|∇u(x)| dx has been one of

the most used regularizers in the literature thanks to its nice
edge-preserving behaviour and the development of efficient
algorithms [10]. It suffers however from staircasing effects
in case of smooth flows. Several alternatives have been
proposed such as the Huber-L1 regularization [30] but we
focus here on the elegant Total Generalized Variation [8]
which brings the discontinuity preserving quality of the Total
Variation to arbitrarily high order derivatives. It is defined in
the Legendre-Fenchel dual space by:

TGVkα(u) = sup
v

{∫
Ω

u(x) divk v(x)

∣∣∣∣v ∈ Ckc (Ω,Rd),

‖ divl v‖∞ ≤ αl, l = 0, . . . , k − 1
}

where Ckc is the space of order k tensors, αl are tunable
weights and divk is the k-divergence for symmetric tensor
fields formally defined in [8]. The primal formulations make

the link with the Total Variation. Most notably we have:

TGV1
α(u) = αTV(u) = α

∫
Ω

|∇u(x)| dx

TGV2
α(u) = min

w∈
Ω→R2

{
α1

∫
Ω

|∇u−w| dx + α0

∫
Ω

|∇w| dx
}
.

TGV1 favors piecewise constant solutions while TGV2 fa-
vors piecewise affine solutions, more desirable for stereo and
optical flow estimations.

Primal-dual TGV2 optimization. The efficient Cham-
bolle & Pock primal-dual optimization scheme [10] can be
used to optimize the discretized TGV2 model. We refer the
reader to [7, 25] for a detailed introduction to the algorithm
with practical details such as the discretized operators. A
standard coarse-to-fine warping with a subsampling factor
s ∈ [0.5, 1[ embeds those iterations to avoid local minima
and increases the convergence rate.

2.2. Direct Data Term

Pixel-wise costs. Our warping scheme is based on the it-
erative linearization of the cost function. Any sufficiently
smooth pixel-wise data term can be used, but complexity
constraints must be taken into account to keep reasonable
performances as the direct cost is going to be evaluated hun-
dreds of times at each pixel. Linear interpolation allows us
to see the discrete pixel intensities as a continuous smooth
function over the image domain. In the following we derive
the direct costs used in our experiments.

The Absolute Difference cost is based on the common
brightness constancy assumption. It is the simplest, most
used term. It is robust to image deformations but degrades
quickly in the presence of illumination changes:

CAD(x,u) = |I0(x)− I1(x + u(x))|. (6)

We use the ternary Census [35] transform as explained
in [25]. The Census transform encodes local structure in a
fixed size window and provides a matching robust to additive
or multiplicative illumination changes. It looses however
some localization accuracy because of the underway dis-
cretization of pixel differences. A bigger window makes the
transform more discriminative but less robust to distortions:

CCensus(x,u) = ∆(C(I0,x), C(I1,x + u(x))), (7)

where ∆ is the Hamming distance and C(I,x) is the Census
transform of the image I at pixel x. The AD-Census [20] ap-
proach combines the previous ones to increase the accuracy
of Census and preserves its robustness:

CADC(x,u) = 2− exp
(
− CAD

µ0

)
− exp

(
− CCensus

µ1

)
. (8)



Occlusions handling. For non-trivial motion estimation,
occlusions should be taken into account. Following [13]
we distinguish two kinds of occlusions: external and self-
occlusions. External occlusions are handled by clipping
the data term to a threshold to prevent outliers from dis-
turbing the whole estimation. This threshold depends on
the application and on the data term used. We found in
the scenarios tested with the AD-Census data-term that a
value of 50% of the maximum direct cost value significantly
increases robustness without deteriorating results in the ab-
sence of occlusions. Self-occlusions appear when a rigid
scene is observed from different viewpoints or when a de-
formable surface folds. They can be handled gracefully with
the theoretically justified assumption that the derivative of
the warp then vanishes in one direction [13]. Given the warp
W(x) = x + u(x), x is occluded if:

∃d | ‖d‖ = 1 and∇dW(x) = 0 i.e. ∇du(x) = −d (9)

where ∇du(x) ≈ u(x+εd)−u(x−εd)
2ε is the finite central

differences based partial derivative in direction d. It has
been shown [13] that the smallest squared partial deriva-
tive σ0 is linked to the Jacobian J of the warp W by
σ0 = min‖d‖=1 d

TJTJd and after spectral decomposition
of O = JTJ:

σ0 =
1

2

(
O11 + O12 −

√
(O11 −O22)2 + 4O2

12

)
.

(10)
A smooth step function S(x, k, r) = 1

1+exp(−k(x−r)) then
translates σ0 to an occlusion probability:

Pocc = 1− S(σ0, 40, 0.1). (11)

The direct data term is not to be trusted on occluded areas so
we multiply it by 1−Pocc before including it in the global
cost function (5).

2.3. Feature-based Data Term

As hinted in Section 1, we draw inspiration from the
LDOF feature based cost (4) with relaxed constraints to
propose a more general approach:

Cmatch(u,Fi) =

∫
Ω

ρi(x)D(x,u(x),Fi) dx (12)

D(x,u(x),Fi) = cΓσ[Df(x + u(x),Fi)]
+ (1− c) Γσ[Dap(x,u(x),Fi)],

(13)

where ρi is the influence function of the feature, Γσ is a
robust estimator, Df is the main feature distance, Dap the a
priori match distance for weakly localized features and c a
weighting factor. Explanations follow.

Influence function. Our framework is not restricted to a
regular grid of descriptors, and most features have a sub-
pixel accurate location. The influence function translates
this property by the use of linear interpolation. Given a
point feature i located at xf = xf0 + dx, xf0 = floor(xf ),
dx = (1, 1)T − dx, its influence function ρi is defined for
the four affected pixels as:

ρi (xf0) = dxxdxy

ρi
(
xf0 + (1, 0)T

)
= dxxdxy

|
|
ρi
(
xf0 + (0, 1)T

)
= dxxdx

ρi
(
xf0 + (1, 1)T

)
= dxxdxy.

Segment features receive the same treatment by considering
them as a dense set of pixels. The influence function is then
an anti-aliased discrete representation of the segment.

Robust cost function. Contrary to [9], we do not rely on
any exterior match quality measure, often unreliable or un-
available. We consider that a match is an inlier if it is com-
patible with the overall motion. To this end, we use the
non-convex Geman McClure M-estimator Γσ(x) = x2

σ+x2

whose influence function dΓσ(x)
dx ∝ x

(σ+x2)2 tends toward
zero when x grows large. We use a small σ = 0.2 for an ef-
ficient implicit outliers filtering. It can be seen that at coarse
levels, where several features affect each pixel, a vote takes
place where the outvoted matches durably loose influence.
At finer level, the regularization and the direct data term
influences are more important and should converge to the
desired optimum.

Feature distances. The feature distances are the standard
cost associated to features. Here follows definitions for point
distance and line distance.

Point features are a mature and active field of research.
A wide choice of descriptors provides an optimal trade-off
between speed (SURF [3]) and robustness (ASIFT [34]).
Using corner detectors [15, 26] allows for more accurately
localized features compared to the regular grid used in LDOF
[9]. The feature distance of points is the Euclidean distance.
For a point feature Fi = xi:

Df
(point)(x,Fi) = ‖x− xi‖. (14)

As demonstrated in [9], the influence of point features nat-
urally decreases during the coarse-to-fine warping. Indeed
the influence of features is related to the area they occupy.
At each upsampling step with a factor s > 1, the relative
area covered by a pixel is multiplied by s−2 < 1. As we will
see, a priori matches are only needed for weakly-localized
features so c = 1 for point features.

The segment matching algorithm proposed by Wang [28]
is interesting because it does not rely on photometric sim-
ilarities but encodes semi-global structure and is robust to
wide-baseline perspective distortion. A matching example



(a) I0 (b) I1
Figure 1. Example of segment matches using [28]. Best viewed in
color.

is displayed in Figure 1. Segment matches lie on the same
line but their endpoints are not guaranteed to be matched
in both images ; in fact, due to occlusions or different im-
age boundaries it is rarely the case. This means that the
proper distance feature to use is the orthogonal distance to
line, which constrains only one dimension. Given a segment
feature defined by its endpoints Fi = (xib ,xie):

D(segment)
f (x,Fi) =

‖(xie − xib)× (x− xib)‖
‖xie − xib‖

. (15)

During the downsampling for coarse-to-fine processing,
the area of the image affected by segments only shrinks
in one dimension. To make the influence of segment fea-
tures vanish at the same rate as point features, the influence
functions ρi are multiplied by s−1 at each upsampling step.

A priori matches. Even though the segment matches con-
strain only one dimension, the remaining degree of freedom
cannot be left fully unconstrained. We introduce the con-
cept of a priori matches which makes the assumption of a
linear mapping between segment matches. Given a segment
F (0)
i = (x

(0)
ib
,x

(0)
ie

) in I0 and its match F (1)
i = (x

(1)
ib
,x

(1)
ie

)

in I1, the a priori match x
(1)
ap of the point x(0) ∈ F (0)

i is
defined by:

t =

〈
(x(0)−x(0)

ib
),(x

(0)
ie
−x(0)

ib
)
〉

‖x(0)
ie
−x(0)

ib
‖2

x(1)
ap = x

(1)
ib

+ t · (x(1)
ie
− x

(1)
ib

)

and the corresponding distance is defined by:

D(segment)
ap (x,u(x),Fi) = ‖x + u(x)− x(1)

ap ‖. (16)

This hypothesis is only true for fronto-parallel segments with
perfectly matched endpoints. However it is most of the time
not far from the truth and can be used as a cue to guide the
optical flow estimation at coarse levels. As shown in Table 1,
a priori matches are not an accurate prior and degrade a lot
the results if used as the sole constraint in either the small
or wide-baseline settings. However, with a more balanced
coefficient c = 0.5 the results are improved in the small-
baseline case compared to using only the feature distance

c Narrow-baseline Wide-baseline

0 only a priori matches 92.6% 0%
0.5 93.9% 41.7%
1 no a priori matches 93.3% 41.7%

Table 1. Influence of the inclusion of a priori matches on the pro-
portion of inlier depths values (error smaller than 5% of the depth
range) when using segment features. The narrow-baseline results
are obtained with the image pair 1− 2 from the herzjesu bench-
mark and the wide-baseline with the image pair 6− 1. Details in
Section 2.3.

without loss of accuracy in the wide-baseline case. This
approach could be easily extended to other weakly localized
features like regions or contours.

3. Experimental Results
In this section we demonstrate the validity and the versa-

tility of our approach on several benchmarks. We start by the
standard optical flow benchmarks and then show promising
results on wide-baseline stereo and non-rigid surface regis-
tration. When not stated otherwise, we use the following
parameters set: λ = 6, β = 0.5, α0 = 4, α1 = 1, 20 warp
of 40 iterations each and a subsampling factor s = 0.8. The
direct data term is AD-Census with a 3× 3 window, µ0 = 1
and µ1 = 0.25. For keypoint matches, we use the FAST
detector [26] and the SIFT descriptor [18] from the OpenCV
library [6], all with default parameters for easy reproduction.
A simple cross-check filter removes the obvious ambiguous
matches.

3.1. Small-Baseline

We speak of small-baseline setting when the overall mo-
tion magnitude is low. This is typically the case in frame-to-
frame optical flow benchmarks. We evaluate our method on
two of them.

KITTI benchmark. The KITTI [14] benchmark is a re-
cent benchmark composed of real-world images captured
from a moving vehicle. They present challenges such as
specularities, dominant non-fronto-parallel surfaces (like the
road), high variability in the displacement magnitudes and
in the illumination conditions. At the time of writing, our
method is the top ranked true 2D optical flow method in this
benchmark as can be seen in Table 2. It means that even
for relatively small displacements (frame-to-frame optical
flow) our method outperforms state of the art. To analyze
the impact of our contributions on this benchmark, we use
the challenging “large displacements” selection of frames
from the Special Session on Robust Optical Flow [1]. In Fig-
ure 2 we compare our method to LDOF [9] that inspired our
framework, TGV2CENSUS [25] based on the same Total
Generalized Variation regularization and MDPOF [32], the



R Method Out-Noc Out-All Avg-Noc Avg-All Time
1 PR-Sf+E 4.08 % 7.79 % 0.9 px 1.7 px 200 s
2 PCBP-Flow[ms] 4.08 % 8.70 % 0.9 px 2.2 px 3 min
3 MotionSLIC[ms] 4.36 % 10.91 % 1.0 px 2.7 px 11 s
4 PR-Sceneflow 4.48 % 8.98 % 1.3 px 3.3 px 150 s
5 TGV2ADCSIFT 6.55 % 15.35 % 1.6 px 4.5 px 12 s (GPU)
6 Data-Flow 8.22 % 15.78 % 2.3 px 5.7 px 3 min
7 fSGM 11.03 % 22.90 % 3.2 px 12.2 px 60 s
8 TGV2CENSUS 11.14 % 18.42 % 2.9 px 6.6 px 4 s (GPU)

Table 2. Results on the KITTI benchmark [14]. Methods 1 and 4
(anonymous) are scene-flow based and unpublished but probably
not comparable. Methods 2 and 3 [33] are one-dimensional motion
stereo estimation methods. Our method ranked 5 is the top true 2D
optical flow method.
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Method Avg. error

Large Displacement Optical Flow [9] 38.88%
Motion Detail Preserving Optical Flow [32] 40.28%
TGV2CENSUS [25] (λ = 5, α0 = 4, Census, 30 warps) 18.83%
λ = 6, α0 = 1 with Census, 20 warps 14.92%
λ = 6, α0 = 1 with AD-Census, 20 warps 15.02%
. . . and self-occlusions handling 14.52%
. . . and incorporating FAST-SIFT matches 13.04%

Figure 2. Quantitative evaluation on the “large displacements” se-
lection of KITTI image pairs [1].

only competitive direct and feature-based method. We see
that the affine regularization of TGV2 is the single most im-
portant parameter. Then, the biggest gain is achieved thanks
to our parameter set: the more relaxed α0 weight creates
less smooth displacement fields. The AD-Census improve-
ment is not visible on the average error because of the outlier
at frame 181. Even if the small-baseline setting is not the
most needing of self-occlusions handling and incorporation
of keypoint matches, those two additions bring meaning-
ful gains. The OpenCV FAST-SIFT matcher produced for
each pair approximately 4000 matches in 4 seconds on a
6 × 2.40GHz Intel Xeon CPU and the variational estima-
tion took 8s on average with an outdated NVidia GeForce
GTX 460 GPU. The focus on this paper is on producing
competitive output with state of the art in various settings
and not on performance. We are convinced that with better
hardware, optimization and parameter tweaks an execution
time inferior to one second is reachable.

Middlebury benchmark. The venerable Middlebury
benchmark [2] has been a reference for years. However, the
proposed image pairs, either synthetic or from a controlled
environment are not representative of real-world motions.
We think it is interesting anyway to show that the presence
of outliers in matches do not noticeably degrade the results.

We use unfiltered SURF [3] matches for this experiment.
They are of very low quality as can be seen in Figure 3b.
The TGV2 regularization is not adequate for the controlled
motions of the Middlebury benchmark, mostly piecewise
constant, so we use a standard TV regularizer in this ex-
periment by setting α0 = ∞. The results are displayed in
Table 3a. The great resilience of our algorithm to mismatches
comes from the use of a non-convex robust estimator which
penalizes matches which are not coherent with others.

3.2. Wide-Baseline Stereo

The increased robustness of our approach allows us to
explore applications such as wide-baseline stereo, previ-
ously unreachable to optical flow techniques. Tola et al. [27]
published interesting datasets along with impressive results
using an innovative robust dense descriptor and Graph-Cut
based discrete optimization [5]. We ran our algorithm on
the herzjesu dataset with segment matches [28] and a
feature weight γ = 5 while constraining the displacement
vectors on the epipolar lines. We adopted the same image
matrix form than in their paper for easy comparison of the
results in Figure 3. For extreme perspective distortions, the
AD-Census data term shows its limits but we see that the
segment features greatly increase the convergence basin and
allows for comparable results on most image pairs. More-
over, our continuous variational approach is faster than the
Graph-Cut ones and is not restricted to one dimension. One
can also note that our occlusion handler, although coming
from the deformable surface field [13] is also suitable for
rigid settings.

3.3. Deformable Surface Detection

Another interesting field of application where optical flow
methods have so far been unadapted is the detection of de-
formable surfaces. Given a flat surface template and an
image of this same surface with non-rigid deformation, the
problem is to estimate the pixel correspondences between the
two images. For non-trivial deformations, pixel-based direct
methods need an initialization close to the solution [24] and
are mostly used on video sequences (surface registration).
Non-rigid surface detection methods are feature-based and
usually adopt a two step approach: features filtering and
fitting of a warp (Thin-Plate Spline or Free-Form Deforma-
tion).

To show the suitability of our method to deformable sur-
face detection and produce some quantitative results, we
generate a synthetic deformation using the Matlab toolbox
from [22]. We obtain point matches using the SIFT detector
and descriptor. We compare ourself with the feature-based
method [24] which is used to filter the matches and then fit
a standard Free-Form Deformation warp. We also add the
LDOF optical flow method as the most robust optical flow
method in the state of the art. We show in Figure 4 that



Method Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus Average

LDOF [9] 0.12 0.18 0.70 0.18 0.13 0.38 0.82 0.38 0.36
Ours 0.12 0.18 0.71 0.18 0.13 0.46 0.60 0.26 0.33
Ours with matches 0.13 0.18 0.72 0.18 0.13 0.45 0.59 0.26 0.33

(a) (b)

Table 3. Benchmark on the training sequence of the Middlebury [2] dataset with average end-point errors (px) in (a). In (b) we show an
example of the low-quality SURF matches used to demonstrate the robustness to outliers. The matches are represented by their equivalent
motion vector.

1 2 3 4 5 6 Average
1 - 96.4 / 90.9 / 90.8 85.2 / 86.3 / 88.7 86.6 / 84.8 / 86.9 85.1 / 85.0 / 87.5 00.0 / 41.7 / 90.1 70.7 / 77.7 / 88.8
2 93.3 / 93.3 / 90.8 - 93.9 / 92.6 / 94.3 78.2 / 91.4 / 92.4 88.1 / 86.7 / 91.4 00.0 / 76.0 / 92.9 70.7 / 88.0 / 92.4
3 83.6 / 83.2 / 86.9 90.8 / 88.9 / 90.3 - 91.4 / 91.7 / 93.2 89.3 / 88.0 / 93.9 00.0 / 91.0 / 96.4 71.0 / 86.6 / 92.1
4 80.9 / 73.2 / 85.5 88.4 / 84.8 / 87.1 92.3 / 92.2 / 93.0 - 90.2 / 90.8 / 95.4 93.3 / 89.9 / 96.8 89.0 / 86.2 / 91.6
5 00.0 / 73.6 / 83.6 76.1 / 74.3 / 86.3 86.9 / 85.4 / 91.7 89.9 / 89.9 / 93.3 - 95.5 / 91.2 / 97.7 69.7 / 82.9 / 90.5
6 00.0 / 00.4 / 83.9 00.0 / 68.0 / 89.2 00.0 / 87.0 / 94.5 92.0 / 90.8 / 95.6 94.4 / 92.5 / 96.7 - 37.3 / 67.7 / 92.0

Figure 3. Evaluation on the herzjesu DAISY dataset. Diagonal depth maps are ground truth. The other depth maps are computed from
the row/column images pairs, where the column images are the references. We used our method with segment matches. Estimated occlusions
are colored in green. The table shows the percentage of outliers – error greater than 5% of the depth range – for our algorithm without
matches / our algorithm with segment matches / Graph Cut with DAISY (results from [27]).

LDOF cannot recover too large motions, and that the feature-
based method looses accuracy near the boundaries where
there are no features. Our method allows us to take advan-
tage of all features, without filtering, to obtain an accurate
warp. Our results are even better with the unfiltered matches
than with the filtered matches, which reveals a weakness
of a separate step of outlier removal: it is difficult to find
the balance between removing too many good matches or
leaving mismatches.

Conclusion

In this work we introduced a general framework allowing
us to greatly extends the scope of applicability of variational
optical flow techniques. We combined a modern powerful
discontinuity preserving regularizer with a robust direct data
term and features integration. We generalized and extended
the model of [9] to support any point features and introduced
the novel concept of a priori matches to enable the use of



LDOF FBDSDDeformed surfaceTemplate Ours ... with 
occlusion handling

... and 
unfiltered matches

... and 
filtered matches

29.1 px 13.3 px 8.33 px 4.38 px 2.99 px3.28 px

Figure 4. Results of deformable surface detection on synthetic data. The 613 unfiltered matches and the 103 filtered matches (green) are
overlayed onto the template and target image. The images show the grid representing the inverse warp computed by each method as well as
the average error of the warp. Best viewed on screen.

weakly localized features such as segments. Self-occlusion
detection, rarely accounted for in optical flow estimation, fur-
ther increases the robustness of our approach. This allowed
us to showcase state of the art results on standard narrow-
baseline optical flow and wide-baseline stereo. Preliminary
results on non-rigid surface detection compare favorably
with other methods and suggests promising use cases. Fu-
ture work involves the improvement of each building block:
higher-order regularization, richer direct data term and new
features such as contours.
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